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Abstract. We study the fourth order Schrödinger operator H = (−∆)2 + V for a short

range potential in three space dimensions. We provide a full classification of zero energy

resonances and study the dynamic effect of each on the L1 → L∞ dispersive bounds. In

all cases, we show that the natural |t|− 3
4 decay rate may be attained, though for some

resonances this requires subtracting off a finite rank term, which we construct and analyze.

The classification of these resonances, as well as their dynamical consequences differ from

the Schrödinger operator −∆ + V .

1. Introduction

We consider the linear fourth order Schrödinger equation in three spatial dimensions

iψt = Hψ, ψ(0, x) = f(x), H := ∆2 + V, x ∈ R3.

Variants of this equation were introduced by Karpman [22] and Karpman and Shagalov [23]

to account for small fourth-order dispersion in the propagation of laser beams in a bulk

medium with Kerr nonlinearity, and may be used to model other “high dispersion” models.

Linear dispersive estimates have recently been studied, [9, 16, 10], we continue this study

to understand the structure and effect of zero energy resonances on the dynamics of the

solution operator in the three dimensional case.

Fourth order Schrödinger equations have been studied in various contexts. For example,

the stability and instability of solitary waves in a non-linear fourth order equation were

considered in [26]. Well-posedness and scattering problems for various nonlinear fourth

order equations have been studied by many authors, see for example [27, 28, 32, 33, 17, 18].

We note that time decay estimates we consider in this paper may be used in the study of

special solutions to non-linear equations.

The first author is partially supported by NSF grant DMS-1501041. The second author is supported by

Simons Foundation Grant 511825.
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In the free case, see [2], the solution operator e−it∆
2

in d-dimensions preserves the L2 norm

and satisfies the following dispersive estimate

‖e−it∆2

f‖L∞(Rd) . |t|−
d
4‖f‖L1(Rd).

In this paper we study the dispersive estimates in three spatial dimensions when there are

obstructions at zero, i.e the distributional solutions to Hψ = 0 with ψ ∈ L∞(R3). We

provide a full classification of the zero energy obstructions as a finite dimensional space

of eigenfunctions along with a ten-dimensional space of two distinct types of zero-energy

resonances, see Section 7. As in the four dimensional case, [16], the zero energy obstructions

in three dimensions have a more complicated structure than that of the Schrödinger operators

−∆ + V , [20, 8]. Let Pac(H) be the projection onto the absolutely continuous spectrum of

H and V (x) be a real-valued, polynomially decaying potential. We prove dispersive bounds

of the form

‖e−itHPac(H)f‖L∞ . |t|−γ‖f‖L1 ,

or a variant with spatial weights, for each type of zero energy obstruction where γ depends on

the type of resonance. Such estimates can be used to study asymptotic stability of solitons

for non-linear equations.

We introduce some notation to state our main results. We let 〈·〉 = (1 + | · |) 1
2 , and let a−

denote a − ε for a small, but fixed value of ε > 0. We define the polynomially weighted Lp

spaces,

Lp,σ(R3) := {f : 〈·〉σf ∈ Lp(R3)}.

We provide a precise definition and characterization of resonances in Section 7 and Def-

inition 4.2 below. We characterize the resonances in terms of distributional solutions to

Hψ = 0. Heuristically, if |ψ(x)| ∼ 1 as |x| → ∞, we have a resonance of the first kind. If

|ψ(x)| ∼ |x|−1 as |x| → ∞ we have a resonance of the second kind, and if |ψ(x)| ∼ |x|− 3
2
−

we have a resonance of the third kind. The classification of the resonances in the fourth

order Schrödinger equation requires a more detailed, subtle analysis than in the Schrödinger

equation since the lower order terms in the expansion of Birman-Schwinger operator interact

each other, see expansions of M(λ) in Lemma 4.1. This causes complications in the classifi-

cation of threshold obstructions which do not arise in the case of Schrödinger’s equation or

in the four dimensional case, see (20), (21), and Section 7. Our main results are summarized

in the theorem below.
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Theorem 1.1. Let V be a real-valued potential satisfying |V (x)| . 〈x〉−β be such that there

are no embedded eigenvalues in [0,∞) except possibly at zero. Then,

i) If zero is regular, then if β > 5,

‖e−itHPac(H)‖L1→L∞ . |t|−
3
4 .

ii) If there is a resonance of the first kind at zero, then if β > 7,

‖e−itHPac(H)‖L1→L∞ . |t|−
3
4 .

iii) If there is a resonance of the second kind at zero, then if β > 11,

‖e−itHPac(H)‖L1→L∞ .

{
|t|− 3

4 |t| ≤ 1

|t|− 1
4 |t| > 1

Moreover, there is a time-dependent, finite-rank operator Ft satisfying ‖Ft‖L1→L∞ .

〈t〉− 1
4 so that

‖e−itHPac(H)− Ft‖L1→L∞ . |t|−
3
4 .

iv) If there is a resonance of the third kind at zero, then if β > 15,

‖e−itHPac(H)‖L1→L∞ .

{
|t|− 3

4 |t| ≤ 1

|t|− 1
4 |t| > 1

Moreover, there is a time-dependent, finite-rank operator Gt satisfying ‖Gt‖L1→L∞ .

〈t〉− 1
4 so that

‖e−itHPac(H)−Gt‖L1→L∞ . |t|−
1
2 .

Furthermore, one can improve this time decay at the cost of spatial weights,

‖e−itHPac(H)−Gt‖L1, 52→L∞,−
5
2
. |t|−

3
4 .

As in the two-dimensional Schrödinger equation and four-dimensional fourth order equa-

tion, we have a ‘mild’ type of resonance which does not affect the natural |t|− d4 decay rate. As

in [9, 16, 10], we assume absence of positive eigenvalues. Under this assumption, a limiting

absorption principle for H was established, see [9, Theorem 2.23], which we use to control

the large energy portion of the evolution, which necessitates the larger bound as t → 0.

The large energy is unaffected by the zero energy obstructions, and our main contribution

is to control the small energy portion of the evolution in all possible cases, which we show is

bounded for all time and decays for large |t|.
In general, |t|− d2 decay rate for the Schrödinger evolution is affected by zero energy ob-

structions. In particular, the time decay for large |t| is slower if there are obstructions at zero,
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see for example [21, 35, 34, 12, 7, 6, 13, 14]. It is natural to expect zero energy resonances

to effect the time decay of the fourth order operator as well. This has been studied only in

dimensions d > 3; by Feng, Wu and Yao, [10], when d > 4 as an operator between weighted

L2 spaces, and by the second and third authors when d = 4, [16]. These works built on the

work of Feng, Soffer and Yao in [9] which considered the case when zero is regular. This

work in turn had its roots in Jensen and Kato’s work [19], and [21] for −∆ + V .

The free linear fourth order Schrödinger equation is studied by Ben-Artzi, Koch, and

Saut [2]. They present sharp estimates on the derivatives of the kernel of the free operator,

(including ∆2 ± ∆). This followed work of Ben-Artzi and Nemirovsky which considered

rather general operators of the form f(−∆) + V on weighted L2 spaces. Further generalized

Schrödinger operators of the form (−∆)m + V were studied in [4], [11]. See also the work of

Agmon [1] and Murata [29, 30, 31]. In particular, Murata’s results for operators of the form

P (D) + V do not hold for the fourth order operator due to the degeneracy of P (D) = ∆2 at

zero.

There are not many works considering the perturbed linear fourth order Schrödinger equa-

tion outside of the previously referenced recent works. There has been study of special solu-

tions for nonlinear equations, see for example [24, 32, 33, 27, 28, 5]. See [25, 26] for a study

of decay estimates for the fourth order wave equation.

Our results follow from careful expansions of the resolvent operators (H − z)−1. We

develop these expansions as perturbations of the free resolvent, for which, by using the

second resolvent identity (see also [9]), we have the following representation:

R(H0; z) := (∆2 − z)−1 =
1

2z
1
2

(
R0(z

1
2 )−R0(−z

1
2 )
)
, z ∈ C \ [0,∞).(1)

Here H0 = (−∆)2 and the R0 is the Schrödinger resolvent R0(z
1
2 ) := (−∆ − z 1

2 )−1. Since

H0 is essentially self-adjoint and σac(∆
2) = [0,∞), by Weyl’s criterion σess(H) = [0,∞) for

a sufficiently decaying potential. Let λ ∈ R+, we define the limiting resolvent operators by

R±(H0;λ) := R±(H0;λ± i0) = lim
ε→0+

(∆2 − (λ± iε))−1,(2)

R±V (λ) := R±V (λ± i0) = lim
ε→0+

(H − (λ± iε))−1.(3)

Note that using the representation (1) for R(H0; z) in definition (2) with z = w4 for w in

the first quandrant of the complex plane, and taking limits as w → λ and w → iλ in the

first quadrant, we obtain

(4) R±(H0;λ4) =
1

2λ2

(
R±0 (λ2)−R0(−λ2)

)
, λ > 0.
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Note that R0(−λ2) : L2 → L2 since −∆ has nonnegative spectrum. Further, by Agmon’s lim-

iting absorption principle, [1], R±0 (λ2) is well-defined between weighted L2 spaces. Therefore,

R±(H0;λ4) is also well-defined between these weighted spaces. This property is extended to

R±V (λ) in [9].

As usual, we use functional calculus and the Stone’s formula to write

e−itHPac(H)f(x) =
1

2πi

∫ ∞
0

e−itλ[R+
V (λ)−R−V (λ)]f(x)dλ.(5)

Here the difference of the perturbed resolvents provides the spectral measure. Our analysis in

the three-dimensional case differs from the four dimensional case and previous works on the

Schrödinger operator in several ways. First, the behavior of the free resolvents in (4) provides

technical challenges in which various lower order terms in the expansions interact. These

interactions complicate the inversion process as the operators whose kernels we study and

need to invert are now the difference of different operators in the resolvent expansions, see

(20) and (21) below. Such difficulties are new to this case, in the analysis of the Schrödinger

resolvents, see [20], on can iterate the expansion procedure by examining the kernel of a

single operator at each step. The techniques developed here may also be of use in dimensions

d = 1, 2 or other high dispersion equations. Furthermore, the difference between the ‘+’ and

‘-’ resolvents in the Stone’s formula, (5), which is crucial in the Schrödinger operators and

the four-dimensional case, do not improve the analysis except in the most singular term in

the case of a resonance of the third kind. Further, the classification of resonances differs

from the Schrödinger case in several key aspects as shown in Section 7 below.

The paper is organized as follows. In Section 2 we provide definitions of the various nota-

tions we use to develop the operator expansions. In Section 3 we develop expansions for the

free resolvent and establish the natural dispersive bound for the free operator. In Section 4

we develop expansions for the perturbed resolvent in a neighborhood of the threshold for

each type of resonance that may occur. In Section 5 we utilize these expansions to prove the

low energy version of Theorem 1.1. In Section 6 we prove the high energy version of Theo-

rem 1.1. Finally, in Section 7 we provide a classification of the spectral subspaces associated

to the different types of zero-energy obstructions.

2. Notation

For the convenience of the reader, we have gathered the notation and terminology we use

throughout the paper.
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For an operator E(λ), we write E(λ) = O1(λ−α) if it’s kernel E(λ)(x, y) has the property

(6) sup
x,y∈R3,λ>0

[
λα|E(λ)(x, y)|+ λα+1|∂λE(λ)(x, y)|

]
<∞.

Similarly, we use the notation E(λ) = O1(λ−αg(x, y)) if E(λ)(x, y) satisfies

(7) |E(λ)(x, y)|+ λ|∂λE(λ)(x, y)| . λ−αg(x, y).

Recall the definition of the Hilbert-Schmidt norm of an operator K with kernel K(x, y),

‖K‖HS :=

(∫∫
R6

|K(x, y)|2 dx dy
) 1

2

.

We also recall the following terminology from [34, 7]:

Definition 2.1. We say an operator T : L2(R2) → L2(R2) with kernel T (·, ·) is absolutely

bounded if the operator with kernel |T (·, ·)| is bounded from L2(R2) to L2(R2).

We note that Hilbert-Schmidt and finite-rank operators are absolutely bounded operators.

We will use the letter Γ to denote a generic absolutely bounded operator. In addition, Γθ

denotes a λ dependent absolutely bounded operator satisfying

(8)
∥∥|Γθ|∥∥L2→L2 + λ

∥∥|∂λΓθ|∥∥L2→L2 . λθ, λ > 0.

The operator may vary depending on each occurrence and ± signs. The use of this notation

allows us to significantly streamline the resolvent expansions developed in Section 4 as well

as the proofs of the dispersive bounds in Section 5.

We use the smooth, even low energy cut-off χ defined by χ(λ) = 1 if |λ| < λ0 � 1 and

χ(λ) = 0 when |λ| > 2λ0 for some sufficiently small constant 0 < λ0 � 1. In analyzing the

high energy we utilize the complementary cut-off χ̃(λ) = 1− χ(λ).

3. The Free Evolution

In this section we obtain expansions for the free fourth order Schrödinger resolvent op-

erators R±(H0;λ4), using the identity (1) and the Bessel function representation of the

Schrödinger free resolvents R±0 (λ2). We use these expansions to establish dispersive esti-

mates for the free fourth order Schrödinger evolution, and throughout the remainder of the

paper to study the spectral measure for the perturbed operator.

Recall the expression of the free Schrödinger resolvents in dimension three, (see [15] for

example)

R±0 (λ2)(x, y) =
e±iλ|x−y|

4π|x− y|
.
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Therefore, by (4),

(9) R±(H0, λ
4)(x, y) =

1

2λ2

(
e±iλ|x−y|

4π|x− y|
− e−λ|x−y|

4π|x− y|

)
.

When, λ|x− y| < 1, we have the following representation for the R(H0, λ
4)

R±(H0, λ
4)(x, y) =

a±

λ
+G0 + a±1 λG1 + a±3 λ

3G3 + λ4G4 +O(λ5|x− y|6).(10)

Here

a± :=
1± i
8π

, a±1 =
1∓ i

8π · (3!)
, a±3 =

1± i
8π · (5!)

, G0(x, y) = −|x− y|
8π

,(11)

G1(x, y) = |x− y|2, G3(x, y) = |x− y|4, G4(x, y) = −|x− y|
5

4π · (6!)
.(12)

When λ|x− y| & 1, the expansion remains valid. Notice that G0 = (∆2)−1.

The following lemma will be used repeatedly to obtain low energy dispersive estimates.

Lemma 3.1. Fix 0 < α < 4. Assume that E(λ) = O1(λ−α) for 0 < λ . 1, then we have the

bound

(13)

∣∣∣∣ ∫ ∞
0

eitλ
4

χ(λ)λ3E(λ) dλ

∣∣∣∣ . 〈t〉−1+α
4 .

Proof. By the support condition and since α < 4, the integral is bounded. Now, for |t| > 1

we rewrite the integral in (13) as∫ t−
1
4

0

eitλ
4

λ3χ(λ)E(λ) dλ+

∫ ∞
t−

1
4

eitλ
4

λ3χ(λ)E(λ) dλ := I + II.

We see that

|I| ≤
∫ t−

1
4

0

λ3−α dλ . t−1+α
4 .

For the second term, we use ∂λe
itλ4/(4it) = eitλ

4
λ3 to integrate by parts once.

|II| . eitλ
4E(λ)

4it

∣∣∣∣
t−

1
4

+
1

t

∫ ∞
t−

1
4

|E ′(λ)| dλ . t−1+α
4 +

1

t

∫ ∞
t−

1
4

λ−α−1 dλ . t−1+α
4 .

�

Lemma 3.2. We have the bound

sup
x,y∈R3

∣∣∣∣ ∫ ∞
0

eitλ
4

χ(λ)λ3R±(H0, λ
4)(x, y) dλ

∣∣∣∣ . 〈t〉− 3
4 .
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Proof. Note that the cancellation between R+ and R− is not needed for, nor does it improve

this bound. Using (9) we have

|R±(H0, λ
4)(x, y)| =

∣∣∣∣∣e±iλ|x−y| − e−λ|x−y|8πλ2|x− y|

∣∣∣∣∣ . 1

λ

uniformly in x, y for λ|x− y| > 1. For λ|x− y| < 1, we have

|R±(H0, λ
4)(x, y)| =

∣∣∣∣∣e±iλ|x−y| − 1 + 1− e−λ|x−y|

8πλ2|x− y|

∣∣∣∣∣ . 1

λ

by the mean value theorem. Similarly,

|∂λR±(H0, λ
4)(x, y)| . 1

λ2

uniformly in x, y. Therefore

(14) R±(H0, λ
4) = O1(λ−1),

and the claim follows from Lemma 3.1 with α = 1. �

Remark 3.3. The t−
3
4 bound is valid if we insert the high energy cutoff χ̃(λ) = 1 − χ(λ)

in place of the low energy cutoff χ(λ) in Lemma 3.1. However, the integral is not absolutely

convergent, and is large for small |t|. That is,∣∣∣∣ ∫ ∞
0

eitλ
4

χ̃(λ)λ3E(λ) dλ

∣∣∣∣ . |t|−1+α
4 .

Consequently, we obtain the following estimate for the the free equation

‖eit∆2

f‖L1→L∞ . t−
3
4 .

4. Resolvent expansions near zero

In this section we provide the careful asymptotic expansions of the perturbed resolvent in

a neighborhood of the threshold. To understand (5) for small energies, i.e. λ � 1, we use

the symmetric resolvent identity. We define U(x) =sign(V (x)), v(x) = |V (x)| 12 , and write

R±V (λ4) = R±(H0, λ
4)−R±(H0, λ

4)v(M±(λ))−1vR±(H0, λ
4),(15)

where M±(λ) = U+vR±(H0, λ
4)v. As a result, we need to obtain expansions for (M±(λ))−1.

The behavior of these operators as λ→ 0 depends on the type of resonances at zero energy,

see Definition 4.2 below. We determine these expansions case by case and establish their

contribution to spectral measure in Stone’s formula, (5).

Let T := U + vG0v, and recall (8), we have the following expansions.
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Lemma 4.1. For 0 < λ < 1 define M±(λ) = U + vR±(H0, λ
4)v. Let P = v〈·, v〉‖V ‖−1

1

denote the orthogonal projection onto the span of v. We have

M±(λ) = A±(λ) +M±
0 (λ),(16)

A±(λ) =
‖V ‖1a

±

λ
P + T,(17)

where T := U + vG0v and M±
0 (λ) = Γ`, for any 0 ≤ ` ≤ 1, provided that v(x) . 〈x〉− 5

2
−`−.

Moreover, for each N = 1, 2, ..., and ` ∈ [0, 1],

(18) M±
0 (λ) =

N∑
k=1

λkM±
k + ΓN+`

provided that v(x) . 〈x〉− 5
2
−N−`−. Here the operators M±

k and the error term are Hilbert-

Schmidt, and hence absolutely bounded operators. In particular

M±
1 = a±1 vG1v, M±

2 = 0, M±
3 = a±3 vG3v, M±

4 = vG4v,(19)

where, the a±j ’s and Gj’s are defined in (11) and (12).

Proof. We give a proof only for the case N = 1, 2, the other cases are similar. Using the

expansion (10) for λ|x− y| < 1 and (9) for λ|x− y| > 1, we have

R±(H0, λ
4)(x, y) =

a±

λ
+G0 + a±1 λG1 +O1(λ3|x− y|4), λ|x− y| < 1,

R±(H0, λ
4)(x, y) =

a±

λ
+G0 + a±1 λG1 +

[e±iλ|x−y| − e−λ|x−y|
8πλ2|x− y|

− a±

λ
−G0 − a±1 λG1

]
=
a±

λ
+G0 + a±1 λG1 +O1(λ|x− y|2), λ|x− y| > 1.

Using these in the definition of M±(λ) and M±
0 (λ), we have∣∣∣(M±

0 (λ)− a±1 λvG1v
)
(x, y)

∣∣∣ . v(x)v(y)|x− y|`+2λ`+1, 0 ≤ ` ≤ 2,∣∣∣∂λ(M±
0 (λ)− a±1 λvG1v

)
(x, y)

∣∣∣ . v(x)v(y)|x− y|`+2λ`, 0 ≤ ` ≤ 2.

This yields the claim for N = 1 since the error term is an Hilbert-Schmidt operator if

v(x) . 〈x〉− 5
2
−1−`−. The case of N = 2 also follows since M2 = 0 and ` ∈ [0, 2]. �

The definition below classifies the type of resonances that may occur at the threshold

energy. In Section 7, we establish this classification in detail. Since the free resolvent is un-

bounded as λ→ 0, this definition is somehow analogous to the definition of resonances from

[20] and [34] for the two dimensional Schrödinger operators. However, there are important
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differences such as the appearance of the operators T1, T2 below. Specifically, the lower order

terms in the expansions interact in such a way that T1 and T2 are now the differences of two

separate operators. This phenomenon does not occur for the Schrödinger operators.

Definition 4.2. i) Let Q := 1 − P . We say that zero is regular point of the spectrum of

∆2 + V provided QTQ is invertible on QL2. In that case we define D0 := (QTQ)−1 as

an absolutely bounded operator on QL2, see Lemma 4.3 below.

ii) Assume that zero is not regular point of the spectrum. Let S1 be the Riesz projection

onto the kernel of QTQ. Then QTQ + S1 is invertible on QL2. Accordingly, we define

D0 = (QTQ + S1)−1, as an operator on QL2. This doesn’t conflict with the previous

definition since S1 = 0 when zero is regular. We say there is a resonance of the first

kind at zero if the operator

T1 := S1TPTS1 −
‖V ‖1

3(8π)2
S1vG1vS1(20)

is invertible on S1L
2.

iii) We say there is a resonance of the second kind if T1 is not invertible on S1L
2, but

T2 := S2vG3vS2 +
10

3
S2vWvS2(21)

is invertible. Here S2 is the Riesz projection onto the kernel of T1, and W (x, y) = |x|2|y|2.

Moreover, we define D1 := (T1 + S2)−1 as an operator on S1L
2.

iv) Finally if T2 is not invertible we say there is a resonance of the third kind at zero. In

this case the operator T3 := S3vG4vS3 is always invertible on S3L
2 where S3 the Riesz

projection onto the kernel of T2, see Lemma 7.6. We define D2 := (T2 + S3)−1 as an

operator on S3L
2.

As in the four dimensional operators, see the remarks after Definition 2.5 in [6] and after

Definition 3.2 in [16], T is a compact perturbation of U . Hence, the Fredholm alternative

guarantees that S1 is a finite-rank projection. With these definitions first notice that, S3 ≤
S2 ≤ S1 ≤ Q, hence all Sj are finite-rank projections orthogonal to the span of v. Second,

since T is a self-adjoint operator and S1 is the Riesz projection onto its kernel, we have

S1D0 = D0S1 = S1. Similarly, S2D1 = D1S2 = S2, S3D2 = D2S3 = S3.

Lemma 4.3. Let |V (x)| . 〈x〉−β for some β > 5, then QD0Q is absolutely bounded.
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Proof. We prove the statement when S1 6= 0. We first assume that QUQ is invertible

QL2 → QL2. Using the resolvent identities, we have

QD0Q = QUQ−QD0Q(S1 + vG0v)QUQ = QUQ− S1UQ−QD0QvG0vQUQ

Note that QUQ is absolutely bounded. Moreover, since S1 is finite rank, any summand

containing S1 is finite rank, and hence absolutely bounded. For QD0QvG0vQUQ, we note

vG0v is an Hilbert-Schmidt operator for any v(x) . 〈x〉−5/2− and QD0Q is bounded. There-

fore, QD0QvG0v is Hilbert-Schmidt. Since the composition of absolutely bounded operators

is absolutely bounded, QD0Q is absolutely bounded.

If QUQ is not invertible, one can define π0 as the Riesz projection onto the kernel of QUQ

and seeQUQ+π0 is invertible onQL2. Therefore, one can considerQ[U+π0+S1+vG0v−π0]Q

in the above argument to obtain the statement. �

Our aim in the rest of this section is to prove Theorem 4.4 below obtaining suitable

expansions for [M±(λ)]−1 valid as λ→ 0 under the assumption that zero is regular and also

in the cases when there are threshold obstructions. Recall the notation (8) and that the

operators Γθ vary from line to line.

Theorem 4.4. If zero is a regular point of the spectrum and if |v(x)| . 〈x〉− 5
2
−, then

[M±(λ)]−1 = QΓ0Q+ Γ1.

If there is a resonance of the first kind at zero and if |v(x)| . 〈x〉− 7
2
−, then

[M±(λ)]−1 = QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

If there is a resonance of the second kind at zero and if |v(x)| . 〈x〉− 11
2
−, then

[M±(λ)]−1 = S2Γ−3S2 + S2Γ−2Q+QΓ−2S2 + S2Γ−1 + Γ−1S2

+QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

If there is a resonance of the third kind at zero and if |v(x)| . 〈x〉− 15
2
−, then

[M±(λ)]−1 =
1

λ4
S3D3S3

+ S2Γ−3S2 + S2Γ−2Q+QΓ−2S2 + S2Γ−1 + Γ−1S2 +QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

Roughly speaking, modulo a finite rank term, the contribution to (5) of all of the operators

in these expansions are of the same size with respect to the spectral parameter λ. We show

in Lemma 5.1 that in the contribution to (15) having the operator Q on one side allows us to
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gain a power of λ, while having S2 allows us to gain two powers of λ modulo the contribution

of G0.

Recall from (16) that M±(λ) = A±(λ) + M±
0 (λ). If zero is regular then we have the

following expansion for (A±(λ))−1.

Lemma 4.5. Let 0 < λ� 1. If zero is regular point of the spectrum of H. Then, we have

(A±(λ))−1 = QD0Q+ g±(λ)S,(22)

where g±(λ) = (a
±‖V ‖1
λ

+ c)−1 for some c ∈ R, and

S =

[
P −PTQD0Q

−QD0QTP QD0QTPTQD0Q

]
,(23)

is a self-adjoint, finite rank operator.

Moreover, the same formula holds for (A±(λ) + S1)−1 with D0 = (Q(T + S1)Q)−1 if zero

is not regular.

Proof. We prove the statement when S1 6= 0. The proof is identical in the regular case.

Recalling (17), we write A±(λ) + S1 in the block format (using PS1 = S1P = 0):

A±(λ) + S1 =

[
a±‖V ‖1

λ
P + PTP PTQ

QTP Q(T + S1)Q

]
:=

[
a11 a12

a21 a22

]
(24)

Since Q(T +S1)Q is invertible, by Feshbach formula (see, e.g., Lemma 2.8 in [7]) invertibility

of A±(λ) + S1 hinges upon the existence of d = (a11− a12a
−1
22 a21)−1. Denoting D0 = (Q(T +

S1)Q)−1 : QL2 → QL2, we have

d =
(a±‖V ‖1

λ
P + PTP − PTQD0QTP

)−1
=
(a±‖V ‖1

λ
+ c
)−1

P =: g±(λ)P

with c = Tr(PTP − PTQD0QTP ) ∈ R. Therefore, d exists if λ is sufficiently small. Thus,

by the Feshbach formula,

(A±(λ) + S1)−1 =

[
d −da12a

−1
22

−a−1
22 a21d a−1

22 a21da12a
−1
22 + a−1

22

]
(25)

= QD0Q+ g±(λ)S.(26)

�

Assume that v(x) . 〈x〉− 5
2
−. Using (16), (18), the resolvent identity and Lemma 4.5 when

zero is regular, we may write (for some ε > 0)
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[M±]−1 = [A± +M±
0 ]−1 = [A± + Γε]

−1

= [A±]−1 − [A±]−1Γε[A
±]−1 + [A±]−1Γε[M

±]−1Γε[A
±]−1 = QΓ0Q+ Γ1,

proving Theorem 4.4 in the regular case.

Assuming that v(x) . 〈x〉− 7
2
−, by Lemma 4.1, we have M±

0 = Γ1. Also using (16) and

Lemma 4.5 we obtain the following expansion in the case zero is not regular:

(27) (M±(λ) + S1)−1 = (A±(λ) + S1 +M±
0 (λ))−1

= (A±(λ) + S1)−1

N∑
k=0

(−1)k[M±
0 (λ)(A±(λ) + S1)−1]k + ΓN+1, N = 0, 1, . . . ,

= QD0Q+ Γ1.

The following lemma from [20] is the main tool to obtain the expansions of M±(λ)−1 when

zero is not regular.

Lemma 4.6. Let M be a closed operator on a Hilbert space H and S a projection. Suppose

M + S has a bounded inverse. Then M has a bounded inverse if and only if

B := S − S(M + S)−1S

has a bounded inverse in SH, and in this case

M−1 = (M + S)−1 + (M + S)−1SB−1S(M + S)−1.(28)

We use this lemma with M = M±(λ) and S = S1. Much of our technical work in the

rest of this section is devoted to finding appropriate expansions for the inverse of B±(λ) =

S1 − S1(M±(λ) + S1)−1S1 on S1L
2 under various spectral assumptions. For simplicity we

work with + signs and drop the superscript.

We first list the orthogonality relations of various operators and projections we need.

SiDj = DjSi = Si, i > j,(29)

S3 ≤ S2 ≤ S1 ≤ Q = P⊥,(30)

S1S = −S1TP + S1TPTQD0Q, SS1 = −PTS1 +QD0QTPTS1,(31)

S1SS1 = S1TPTS1,(32)

SS2 = S2S = 0,(33)

QM1S2 = S2M1Q = S3M1 = M1S3 = 0,(34)
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S2M3S3 = S3M3S2 = 0.(35)

These can be checked using (23), (19), and Qv = S2TP = S2vG1vQ = S2xjv = S3xixjv = 0,

i, j = 1, 2, 3 (see Lemmas 7.4 and 7.5 below).

Using (18) with N = 1, ` = 0+ and (26) in (27), and then using (32), we obtain

(36) B(λ) = S1 − S1(M(λ) + S1)−1S1 = −g(λ)S1TPTS1 + λS1M1S1 + Γ1+,

provided that |v(x)| . 〈x〉− 7
2
−.

Using (19), we have

(37) g(λ)S1TPTS1 − λS1M1S1 = g(λ)[S1TPTS1 − a1
λ

g(λ)
S1vG1vS1]

= g(λ)T1 − ca1λg(λ)S1vG1vS1 = g(λ)T1 + Γ2,

where

T1 = S1TPTS1 −
‖V ‖1

3(8π)2
S1vG1vS1.

The second equality follows from

g(λ)[S1TPTS1 − a1
λ

g(λ)
S1vG1vS1] = g(λ)[S1TPTS1 − a1(a‖V ‖1 + cλ)S1vG1vS1],

and recalling the definitions of g(λ), (11) and (19) to see

a±a±1 =
(±i+ 1)(∓i+ 1)

(8π)2(3!)
=

2

(8π)2(3!)
=

1

3(8π)2.

In the case when there is a resonance of the first kind at zero, namely when T1 is invertible,

using (37) in (36), we obtain

B(λ)−1 = (−g(λ)T1 + Γ1+)−1 = Γ−1,

provided that v(x) . 〈x〉− 7
2
−. Using this and (27) in (28), we obtain

[M(λ)]−1 = QD0Q+ Γ1 + (QD0Q+ Γ1)S1Γ−1S1(QD0Q+ Γ1)

= QΓ−1Q+QΓ0 + Γ0Q+ Γ1,

proving Theorem 4.4 in the case when there is a resonance of the first kind.

In the case when there is a resonance of the second or third kind, namely when S2 6= 0,

we need more detailed expansions for B(λ), and hence for (M(λ) + S1)−1.

Using (18) and (19) in (27) we obtain

(38) (M(λ) + S1)−1 = QD0Q+ g±(λ)S − λQD0QM1QD0Q
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− λg±(λ)
[
QD0QM1S + SM1QD0Q

]
+ λ2QD0Q(M1QD0Q)2

− λ(g±(λ))2SM1S + λ2g±(λ)
[
S(M1QD0Q)2 +QD0QM1SM1QD0Q+ (QD0QM1)2S

]
− λ3QD0Q

[
M3 +M1(QD0QM1)2

]
QD0Q+ Γ3+,

provided that v(x) . 〈x〉− 11
2
−.

Using (29)-(32) and (37) in (38), we obtain

(39) S1(M(λ) + S1)−1S1 = S1 + g(λ)T1

− ca1λg(λ)S1vG1vS1 − λg(λ)S1

[
M1S + SM1

]
S1 + λ2S1M1QD0QM1S1

− λ(g(λ))2S1SM1SS1 + λ2g(λ)
[
S1SM1QD0QM1S + S1M1SM1S1 + S1M1QD0QM1SS1

]
− λ3S1

[
M3 +M1(QD0QM1)2

]
S1 + Γ3+.

Therefore

B(λ) = S1 − S1(M(λ) + S1)−1S1 = −g(λ)T1

+ a1λg(λ)S1(cM1 + SM1 +M1S)S1 − λ2S1M1QD0QM1S1

+ λ(g(λ))2S1SM1SS1 + λ2g(λ)
[
S1SM1QD0QM1S + S1M1SM1S1 + S1M1QD0QM1SS1

]
+ λ3S1

[
M3 +M1(QD0QM1)2

]
S1 + Γ3+.

Let U1 = S1 − S2, U2 = S2 − S3, and U = U1 + U2. In block form, we have

B(λ) =

[
S3B(λ)S3 S3B(λ)U

UB(λ)S3 UB(λ)U

]
,(40)

UB(λ)U =

[
U2B(λ)U2 U2B(λ)U1

U1B(λ)U2 U1B(λ)U1

]
.(41)

We first invert UB(λ)U for small λ. We have

U1B(λ)U1 = −g(λ)U1T1U1 + U1Γ2U1,

Using (33) and (34), we obtain

U1B(λ)U2 = a1λg(λ)U1SvG1vU2 + U1Γ3U2 = −a1λg(λ)U1TPvG1vU2 + U1Γ3U2,

Similarly,

U2B(λ)U1 = −a1λg(λ)U2vG1vPTU1 + U2Γ3U1,

and
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U2B(λ)U2 = λ3U2M3U2 − λ2g(λ)U2M1SM1U2 + Γ4

= a3λ
3U2vG3vU2 − a2

1λ
2g(λ)U2vG1vSvG1vU2 + U2Γ3+U2.

Note that by (34)

U2vG1vSvG1vU2 = U2vG1vPvG1vU2 = ‖V ‖L1U2vWvU2,

where W (x, y) = |x|2|y|2. In the second equality we used G1(x, y) = |x|2 − 2x · y + |y|2 and

S2xjv = S2v = 0. Also noting that

a3λ

g(λ)
= a3a‖V ‖1 + ca3λ =

2i‖V ‖1

5!(8π)2
+ ca3λ, a2

1 =
−2i

(3!)2(8π)2
,

we obtain

U2B(λ)U2 =
2i

5!(8π)2
‖V ‖L1λ2g(λ)[U2vG3vU2 +

10

3
U2vWvU2] + Γ4

=
2i

5!(8π)2
‖V ‖L1λ2g(λ)U2T2U2 + U2Γ3+U2.

If U1 = 0, i.e. S1 = S2, then we can invert UBU as

(UB(λ)U)−1 =
5!(8π)2

2i‖V ‖L1λ2g(λ)
(U2T2U2)−1 + U2Γ−3+U2 = U2Γ−3U2.

If U1 6= 0, we invert UB(λ)U using Feshbach’s formula. Note that, we can rewrite (41)

using the calculations above:

UB(λ)U = −g(λ)

[
− 2i

5!(8π)2
‖V ‖L1λ2U2T2U2 + U2Γ2+U2 a1λU2vG1vPTU1 + U2Γ2U1

a1λU1TPvG1vU2 + U1Γ2U2 U1T1U1 + U1Γ1U1

]
.

Note that a22 is invertible. Therefore UB(λ)U is invertible provided the following exists

d =

(
− 2i‖V ‖L1

5!(8π)2
λ2U2T2U2 − a2

1λ
2S2vG1vPTU1(U1T1U1)−1U1TPvG1vU2 + U2Γ2+U2

)−1

= − 5!(8π)2

2i‖V ‖L1λ2

(
U2T2U2−

10

3‖V ‖L1

U2vG1vPTU1(U1T1U1)−1U1TPvG1vU2

)−1

+U2Γ−2+U2.

Note that, since S2v = S2xjv = 0 we can rewrite the operator in parenthesis as

U2T2U2 −
10〈(U1T1U1)−1U1Tv, U1Tv〉

3‖V ‖L1

U2vWvU2

= U2vG3vU2 +
10

3

(
1− 〈(U1T1U1)−1U1Tv, U1Tv〉

‖V ‖L1

)
U2vWvU2.
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Note that by Lemma 7.5 below the kernel of T2 agrees with the kernel of S2vG3vS2. Therefore

U2vG3vU2 is invertible and positive definite. Since U2vWvU2 is positive semi-definite, the

inverse exists if we can prove that 〈(U1T1U1)−1U1Tv, U1Tv〉 ≤ ‖V ‖L1 . Note that

U1TPTU1u =
1

‖V ‖L1

U1(Tv)〈u, U1(Tv)〉.

Also note that U1T1U1 − U1TPTU1 is positive semi-definite. Therefore the required bound

follows from the following lemma with H = U1L
2, z = U1(Tv), α = 1

‖V ‖L1
, and S =

U1T1U1 − U1TPTU1.

Lemma 4.7. Let H be a Hilbert space. Fix z ∈ H and α > 0 and let T (u) = αz〈u, z〉,
u ∈ H. Let S be a positive semi-definite operator on H so that T + S is invertible. Then,

0 ≤
〈
(T + S)−1z, z

〉
≤ 1

α
.

Proof. Let w = (T + S)−1z. We have

z = T w + Sw = αz〈w, z〉+ Sw, and hence Sw = z − αz〈w, z〉.

Then since S is positive semi-definite,

0 ≤ 〈Sw,w〉 =
〈
z − αz〈w, z〉, w

〉
= 〈z, w〉 − α|〈z, w〉|2.

Therefore, 〈(T + S)−1z, z〉 = 〈w, z〉 ∈ R and

0 ≤ 〈w, z〉 ≤ 1

α
. �

We conclude that

d = λ−2U2DU2 + U2Γ−2+U2 = U2Γ−2U2.

Using this in the Feshbach formula (25), we obtain

(42) (UB(λ)U)−1 = − 1

g(λ)

[
U2Γ−2U2 + U2Γ−1U2 U2Γ−1U1

U1Γ−1U2 U1Γ0U1

]
= U2Γ−3U2 + U2Γ−2U1 + U1Γ−2U2 + U1Γ−1U1.

We now focus on the case S3 = 0, U2 = S2 6= 0. We have B(λ)−1 = (UB(λ)U)−1. Using

(38) and orthogonality relations (29)-(34), we have

S2(M(λ) + S1)−1 = (M(λ) + S1)−1S2 = S2 + Γ2.

Also recall that

(M(λ) + S1)−1 = QD0Q+ Γ1.
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Using these in (28), we have

(43) M(λ)−1 = QD0Q+ Γ1

+ (M(λ) + S1)−1
[
U2Γ−3U2 + U2Γ−2U1 + U1Γ−2U2 + U1Γ−1U1

]
(M(λ) + S1)−1

= S2Γ−3S2 + S2Γ−2Q+QΓ−2S2 + S2Γ−1 + Γ−1S2 +QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

This expansion is valid also in the case U1 = 0, proving Theorem 4.4 in the case of resonance

of the second kind.

We consider the final case, when S3 6= 0. Using

(A±(λ) + S1)−1S3 = S3(A±(λ) + S1)−1 = S3,

S3M
±
0 = M±

0 S3 = Γ3,

S3M
±
0 S3 = λ4S3vG4vS3 + Γ5 = λ4T3 + Γ5,

we have

S3B
±S3 = −S3

4∑
k=1

(−1)k[M±
0 (λ)(A±(λ) + S1)−1]kS3 + Γ5 = λ4T3 + Γ5,

provided that v(x) . 〈x〉− 15
2
−.

If U 6= 0, we invert B(λ) using Feshbach’s formula for the block form (40). Note that

d =
(
S3BS3 − S3BU(UBU)−1UBS3

)−1
.

The leading term is λ4T3 + Γ5. We write the second term as

S3BU2(UBU)−1U2BS3 + S3BU1(UBU)−1U2BS3

+ S3BU2(UBU)−1U1BS3 + S3BU1(UBU)−1U1BS3 = Γ5.

To obtain the estimate, we used S3BU2 = Γ4, S3BU1 = Γ3, and (42). Therefore, for small

λ > 0,

d = λ−4D3 + S3Γ−3S3 = S3Γ−4S3.

Using this in Feshbach’s formula for the block form (40) we obtain

B(λ)−1 = λ−4D3 + S3Γ−3S3 + S3Γ−4S3BU(UBU)−1 + (UBU)−1UBS3Γ−4S3

+ λ−4(UBU)−1UBS3Γ−4S3BU(UBU)−1 + (UBU)−1.
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Using (42), decomposing U = U1 + U2 as above, and using S3BU2 = Γ4, S3BU1 = Γ3, we

have

B(λ)−1 = λ−4D3 + S2Γ−3S2 + S2Γ−2S1 + S1Γ−2S2 + S1Γ−1S1.

Finally, using

S2(M(λ) + S1)−1 = (M(λ) + S1)−1S2 = S2 + Γ2,

S3(M(λ) + S1)−1 = (M(λ) + S1)−1S3 = S3 + Γ3,

(M(λ) + S1)−1 = QD0Q+ Γ1,

we obtain Theorem 4.4 in the case of a resonance of the third kind.

5. Low energy dispersive estimates

In this section we analyze the perturbed evolution e−itH in L1 → L∞ setting for small

energy, when the spectral variable λ is in a small neighborhood of the threshold energy

λ = 0. As in the free case, we represent the solution via Stone’s formula, (5). As usual, we

analyze (5) separately for large energy, when λ & 1, and for small energy, when λ � 1, see

for example [34, 7]. The effect of the presence of zero energy resonances is only felt in the

small energy regime. Different resonances change the asymptotic behavior of the perturbed

resolvents and hence that of the spectral measure as λ → 0 which we study in this section.

The large energy argument appears in Section 6 to complete the proof of Theorem 1.1.

We start with the following lemma which will be used repeatedly.

Lemma 5.1. Assume that v(x) . 〈x〉− 5
2
−, then

sup
y

∥∥[QvR±(H0, λ
4)](·, y)

∥∥
L2 . 1, and sup

y

∥∥∂λ[QvR±(H0, λ
4)](·, y)

∥∥
L2 .

1

λ
.

Assuming that v(x) . 〈x〉− 7
2
−, we have

sup
y

∥∥[S2v(R±(H0, λ
4)−G0)

]
(·, y)

∥∥
L2 . λ, sup

y

∥∥∂λ[S2v(R±(H0, λ
4)−G0)

]
(·, y)

∥∥
L2 . 1,

and

sup
y

∥∥[S2v(R+(H0, λ
4)−R−(H0, λ

4))
]
(·, y)

∥∥
L2 . λ,

sup
y

∥∥∂λ[S2v(R+(H0, λ
4)−R−(H0, λ

4))
]
(·, y)

∥∥
L2 . 1.
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Proof. We prove the assertion for + sign. Recall the expansion (10). Using the fact Qv = 0

we have

[QvR+(H0, λ
4)](y2, y) =

1

8πλ

∫
R3

Q(y2, y1)v(y1)[F (λ|y − y1|)− F (λ|y|)]dy1

=
1

8π

∫
R3

Q(y2, y1)v(y1)

∫ |y−y1|
|y|

F ′(λs)dsdy1,

where

F (p) =
eip − e−p

p
.

Noting that |F ′(p)| . 1, and using the absolute boundedness of Q, we obtain∥∥[QvR+(H0, λ
4)](·, y)

∥∥
L2 .

∥∥∥∫
R3

|Q(y2, y1)||v(y1)|〈y1〉dy1

∥∥∥
L2
y2

. ‖v(y1)〈y1〉‖L2 . 1,

uniformly in y.

Now consider S2v(R+(H0, λ
4)−G0). We have

[S2v(R+(H0, λ
4)−G0)](y2, y) =

1

8πλ

∫
R3

S2(y2, y1)v(y1)F (λ|y − y1|)dy1

where

F (p) =
eip − e−p

p
+ p.

Noting that S2v = 0 we can rewrite the integral above as

1

8πλ

∫
R3

S2(y2, y1)v(y1)[F (λ|y − y1|)− F (λ|y|)]dy1

=
1

8π

∫
R3

S2(y2, y1)v(y1)

∫ |y−y1|
|y|

F ′(λs)dsdy1.

Furthermore, one has S2yjv = 0, and hence∫
R3

S2(y2, y1)v(y1)
y1 · y
|y|

F ′(λ|y|)dy1 =

∫
R3

S2(y2, y1)v(y1)y1dy1 ·
y

|y|
F ′(λ|y|) = 0.

This gives

(44)

∫
R3

S2(y2, y1)v(y1)

∫ |y−y1|
|y|

F ′(λs)dsdy1

=

∫
R3

S2(y2, y1)v(y1)
[ ∫ |y−y1|
|y|

F ′(λs)ds+
y1 · y
|y|

F ′(λ|y|)
]
dy1

=

∫
R3

S2(y2, y1)v(y1)

[∫ |y−y1|
|y|− y1·y|y|

F ′(λs)ds−
∫ |y|
|y|− y1·y|y|

F ′(λs)ds+

∫ |y|
|y|− y1·y|y|

F ′(λ|y|)ds

]
dy1
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=

∫
R3

S2(y2, y1)v(y1)

[∫ |y−y1|
|y|− y1·y|y|

F ′(λs)ds+ λ

∫ |y|
|y|− y1·y|y|

∫ |y|
s

F ′′(λk)dkds

]
dy1.

To control the integrals in (44) notice that |F (k)(p)| . p2−k for k = 1, 2. Therefore, for

|y| −
∣∣∣y1·y|y| ∣∣∣ ≥ 0, we obtain

∣∣∣ ∫ |y−y1|
|y|− y1·y|y|

F ′(λs)ds
∣∣∣ . λ

∣∣∣ ∫ |y−y1|
|y|− y1·y|y|

sds
∣∣∣ . λ

∣∣∣|y − y1|2 − (|y| − y1 · y
|y|

)2
∣∣∣ . λ〈y1〉2.(45)

Note that if |y| −
∣∣∣y1·y|y| ∣∣∣ < 0, one has |y|, |y − y1| < |y1| and therefore the above inequality is

trivial.

For the second term in (44), we have∫ |y|
|y|− y1·y|y|

∫ |y|
s

F ′′(λk)dkds =

∫ |y|
|y|− y1·y|y|

[k − |y|+ y1 · y
|y|

]F ′′(λk)dk.(46)

Noting that |[k − |y|+ y1·y
|y| ]| . 〈y1〉 and |F ′′(λk)| . 1. This term can be controlled by 〈y1〉2.

Finally, by (45) and (46), we obtain

∥∥[S2v(R+(H0, λ
4)−G0)](·, y)

∥∥
L2

. λ
∥∥∥∫

R3

|S2(y2, y1)||v(y1)|〈y1〉2dy1

∥∥∥
L2
y2

. λ‖v(y1)〈y1〉2‖L2 . λ,

uniformly in y.

To establish the bound on the first derivative, note that

∂λF (λr) =
1

λ

[ [i(λr)− 1]ei(λr) + e−(λr)[(λr) + 1]

(λr)
− (λr)

]
=:

1

λ
F̃ (λr)

Since one has |F̃ k(p)| . p2−k, one can apply the same method to F̃ to finish the proof.

The last assertion follows from noting that the bounds used on S2v(R±(H0, λ
4)−G0) also

apply to S2v(R+(H0, λ
4)−R−(H0, λ

4)), see (10) and the subsequent discussion. �

We first consider the case when zero is regular (S1 = 0) or when there is a resonance of

the first kind S1 6= 0, S2 = 0.

Theorem 5.2. Assume that v(x) . 〈x〉− 5
2
− and S1 = 0, or that v(x) . 〈x〉− 7

2
− and S1 6=

0, S2 = 0. Then

sup
x,y∈R3

∣∣∣∣∣
∫ ∞

0

eitλ
4

λ3χ(λ)R±V (λ4)(x, y) dλ

∣∣∣∣∣ . 〈t〉− 3
4 .(47)
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Proof. Recall (15):

R±V (λ4) = R±(H0, λ
4)−R±(H0, λ

4)v(M±(λ))−1vR±(H0, λ
4).

We already obtained the required bound for the free term in Lemma 3.2. For the correction

term, dropping the ± signs, the claim will follow from Lemma 3.1 with

(48) E(λ)(x, y) =
[
R(H0, λ

4)v(M(λ))−1vR(H0, λ
4)
]
(x, y).

By Theorem 4.4, in the regular case we have M(λ)−1 = QD0Q+Γ1. In the case of a resonance

of the first kind, we have

M(λ)−1 = QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

First consider the contribution of Γ1 to (48):[
R(H0, λ

4)vΓ1vR(H0, λ
4)
]
(x, y).

Note that, by (14) we have

(49) ‖vR(H0, λ
4)(·, y)‖L2 .

1

λ
, ‖∂λvR(H0, λ

4)(·, y)‖L2 .
1

λ2

uniformly in y. Therefore we estimate the contribution of the error term to E(λ)(x, y) by

λ‖vR(H0, λ
4)(·, x)‖L2‖vR(H0, λ

4)(·, y)‖L2 .
1

λ
,

and its λ derivative by 1
λ2

. Hence, the claim follows from Lemma 3.1 with α = 1.

Now, consider the contribution of QΓ−1Q to (48):[
R(H0, λ

4)vQΓ−1QvR(H0, λ
4)
]
(x, y).

Note that, by Lemma 5.1, we bound this term by

‖QvR(H0, λ
4)(·, y)‖L2‖QvR(H0, λ

4)(·, x)‖L2‖|Γ−1|‖L2→L2 .
1

λ

uniformly in x, y. Similarly, its λ-derivative is bounded by 1
λ2

. Therefore, the claim follows

from Lemma 3.1.

The contributions of QΓ0 and Γ0Q can be bounded similarly by using Lemma 5.1 on one

side and (49) on the other side. �

Theorem 5.3. Assume that v(x) . 〈x〉− 11
2
−. If S2 6= 0, S3 = 0 then

sup
x,y∈R3

∣∣∣∣∣
∫ ∞

0

eitλ
4

λ3χ(λ)R±V (λ4)(x, y) dλ− F±(x, y)

∣∣∣∣∣ . 〈t〉− 3
4 .(50)

Here F± are time dependent finite rank operators satisfying ‖F±‖L1→L∞ . 〈t〉−
1
4 .
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Moreover if v(x) . 〈x〉− 15
2
− and S3 6= 0, then

sup
x,y∈R3

∣∣∣∣∣
∫ ∞

0

eitλ
4

λ3χ(λ)[R+
V (λ4)−R−V (x, y)] dλ−G(x, y)

∣∣∣∣∣ . 〈t〉− 1
2 ,(51)

where G is a time dependent finite rank operator satisfying ‖G‖L1→L∞ . 〈t〉−
1
4 .

Proof. We first prove (50). By Theorem 4.4, in the case of a resonance of the second kind,

we have

[M±(λ)]−1 = S2Γ−3S2 + S2Γ−2Q+QΓ−2S2 + S2Γ−1 + Γ−1S2 +QΓ−1Q+QΓ0 + Γ0Q+ Γ1.

We only consider the contribution of S2Γ−3S2 to (15), the others can be handled similarly.

Let

E(λ, x, y) =
[
R±(H0, λ

4)vS2Γ−3S2vR
±(H0, λ

4)
]
(x, y)

Note that by Lemma 5.1 we have

E = G0vS2Γ−3S2vG0 +G0vS2Γ−3S2v(R±(H0, λ
4)−G0)

+ (R±(H0, λ
4)−G0)vS2Γ−3S2vG0 +O1(λ−1).

By Lemma 3.1, the contribution of the last term is . 〈t〉− 3
4 . Moreover, noting that S2v = 0,

we have ∥∥[S2vG0](·, y)
∥∥
L2 =

∥∥∥∫
R3

S2(·, y1)v(y1)[|y − y1| − |y|]dy1

∥∥∥
L2
. 1,

since |[|y − y1| − |y|]| . 〈y1〉. Therefore, the first term is O1(λ−3), and by Lemma 3.1 its

contribution is . 〈t〉− 1
4 . Also note that its contribution is finite rank since S2 is. Similarly

the contributions of second and third terms are . 〈t〉− 1
2 , and finite rank. One can explic-

itly construct the operators F±(x, y) from the contribution of these operators to the Stone

formula, (5).

Next we prove (51). Note that all the term in M(λ)−1 in Theorem 4.4 except λ−4D3 are

similar to the terms in the M−1(λ) that we considered in the case of resonance of the second

kind. Therefore, we only control the terms interacting with D3, that is we need to control

the contribution of the following term to the Stone’s formula,

[R+(H0, λ
4)−R−(H0, λ

4)]v
D3

λ4
vR+(H0, λ

4)

= [R+(H0, λ
4)−R−(H0, λ

4)]v
D3

λ4
vG0
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+ [R+(H0, λ
4)−R−(H0, λ

4)]v
D3

λ4
v[R+(H0, λ

4)−G0].

Using Lemma 5.1, the first term is O1(λ−3), and hence its contribution to Stone’s formula

is 〈t〉− 1
4 by Lemma 3.1, and is finite rank. Similarly, the second term is O1(λ−2) and its

contribution is . 〈t〉− 1
2 . G(x, y) is obtained explicitly by inserting these operators in (5). �

We note that the time decay of the non-finite rank portion of the evolution when S3 6= 0

can be improved at the cost of spatial weights.

Corollary 5.4. If v(x) . 〈x〉− 15
2
− and S3 6= 0, then∣∣∣∣∣

∫ ∞
0

eitλ
4

λ3χ(λ)[R+
V (λ4)−R−V (x, y)] dλ−G(x, y)

∣∣∣∣∣ . 〈t〉− 3
4 〈x〉

5
2 〈y〉

5
2 ,(52)

where G is a time dependent finite rank operator satisfying ‖G‖L1→L∞ . 〈t〉−
1
4 .

Proof. We need only supply a new bound for the contribution of the following

[R+(H0, λ
4)−R−(H0, λ

4)]v
D3

λ4
v[R+(H0, λ

4)−G0].(53)

We note that S3vP2(x) = 0 for any quadratic polynomial in the xj variables. Hence, S3vG1 =

0 as we may write G1(x, y) = |x|2− 2x · y+ |y|2. By truncating the expansion in (10) earlier,

we see

[R+(H0, λ
4)−R−(H0, λ

4)] =
a+ − a−

λ
+ (a+

1 − a−1 )λG1 +O((λ|x− y|)`|x− y|) 1 < ` ≤ 3.

Using the orthogonality relations above and selecting ` = 3
2
, one can see that

[R+(H0, λ
4)−R−(H0, λ

4)](x, ·)vS3 = O1(λ
3
2 〈x〉

5
2 )

A very similar computation shows that

S3v[R+(H0, λ
4)−G0](·, y) = O1(λ

3
2 〈y〉

5
2 ).

Combining these, we see that

[R+(H0, λ
4)−R−(H0, λ

4)]v
D3

λ4
v[R+(H0, λ

4)−G0] = O1(λ−1〈x〉
5
2 〈y〉

5
2 ).

Applying Lemma 3.1 proves the claim.

�



DISPERSIVE ESTIMATES FOR FOURTH ORDER SCHRÖDINGER 25

6. The Perturbed Evolution For Large Energy

For completeness, we include a proof of the dispersive bound for the large energy portion

of the evolution. Here we need to assume the lack of eigenvalues embedded in [0,∞) for the

perturbed fourth order operator H = (−∆)2+V . It is known that embedded eigenvalues may

exist even for compactly supported smooth potentials. To complete the proof of Theorem 1.1

we show

Proposition 6.1. Let |V (x)| . 〈x〉−3−, and assume there are no embedded eigenvalues in

the continuous spectrum of H, then

sup
x,y∈R3

∣∣∣∣∣
∫ ∞

0

eitλ
4

λ3χ̃(λ)R±V (λ4)(x, y) dλ

∣∣∣∣∣ . |t|− 3
4 .(54)

To prove the Proposition 6.1 we use the resolvent identities and write,

RV (λ4) = R±(H0, λ
4)−R±(H0, λ

4)V R±(H0, λ
4) +R±(H0, λ

4)V RV (λ4)V R±(H0, λ
4).(55)

Recall by the second part of Remark 3.3, we know that the first summand in (55) satisfies

the bound in (54). Therefore, it suffices to establish the bound in Proposition 6.1 is valid

for the last two summands in (55). Recall by (14), we have

R±(H0, λ
4)(x, y) = O1(λ−1).(56)

This, along with the fact that λ & 1, shows that

R±(H0, λ
4)V R±(H0, λ

4) = O1(λ−1),

as the following bounds hold uniformly in x, y:

|R±(H0, λ
4)V R±(H0, λ

4)(x, y)| . λ−1

∫
R3

|V (x1)|dx1 . λ−1

|∂λ{R±(H0, λ
4)V R±(H0, λ

4)]}(x, y)| . λ−2

∫
R3

|V (x1)|dx1 . λ−2.

Hence, by first part of Remark 3.3, R±V R± contributes |t|− 3
4 to Stone’s formula.

We next consider the last term in (55). To control this term, we utilize the following.

Theorem 6.2. [9, Theorem 2.23] Let |V (x)| . 〈x〉−k−1. Then for any σ > k + 1/2,

∂kzRV (z) ∈ B(L2,σ(Rd), L2,−σ(Rd)) is continuous for z /∈ 0 ∪ Σ. Further,

‖∂kzRV (z)‖L2,σ(Rd)→L2,−σ(Rd) . z−(3+3k)/4.

The following suffices to finish the proof of Proposition 6.1.
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Lemma 6.3. Let |V (x)| . 〈x〉−3−, then

sup
x,y∈R3

∣∣∣ ∫ ∞
0

e−itλ
4

χ̃(λ)λ3[R±(H0, λ
4)V R±V (λ4)V R±(H0, λ

4)](x, y)dλ
∣∣∣ . |t|− 3

4 ,

Proof. Recalling the proof of Lemma 3.1, it suffices to establish

‖R±(H0, λ
4)V RV (λ4)V R±(H0, λ

4)‖L1→L∞ . λ−1

‖∂λ{R±(H0, λ
4)V RV (λ4)V R±(H0, λ

4)}‖L1→L∞ . λ−2

Note that first by (56), and using that L∞ ⊂ L2,− 3
2
−, we have

‖[R±(H0, λ
4)]‖L1→L2,−σ = O1(λ−1), σ > 3/2,(57)

along with the dual estimate as an operator from L2,σ → L∞. Hence, by Theorem 6.2 we

have the following estimate

‖[R±(H0, λ
4)V RV (λ4)V R±(H0, λ

4)]‖L1→L∞

. ‖R±(H0, λ
4)‖L2,σ→L∞‖V RV (λ4)V ‖L2,−σ→L2,σ‖R±(H0, λ

4)‖L1→L2,−σ . λ−1

for any |V (x)| . 〈x〉−2−. In fact, one can show this term is smaller, though this bound is

valid since λ & 1. Similarly, by (56) and Theorem 6.2 with z = λ4 one obtains

‖∂λ{R±(H0, λ
4)V RV (λ4)V R±(H0, λ

4)}‖L1→L∞ . λ−2

for any |V (x)| . 〈x〉−3−. Here, we note that the extra decay on V is needed when the

derivative falls on the perturbed resolvent RV so that V maps L2,− 3
2
− → L2, 3

2
+.

�

7. Classification of threshold spectral subspaces

In this section we establish the relationship between the spectral subspaces SiL
2(R3) for

i = 1, 2, 3 and distributional solutions to Hψ = 0.

Lemma 7.1. Assume |v(x)| . 〈x〉− 5
2
−, if φ ∈ S1L

2(R3)\{0}, then φ = Uvψ where ψ ∈ L∞,

Hψ = 0 in distributional sense, and

(58) ψ = c0 −G0vφ, where c0 =
1

‖V ‖L1

〈v, Tφ〉.

Proof. Assume φ ∈ S1L
2(R4), one has QTQφ = Q(U + vG0v)φ = 0. Note that

0 = Q(U + vG0v)φ = (I − P )(U + vG0v)φ

= Uφ+ vG0vφ− PTφ
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=⇒ φ = Uv(−G0vφ+ c0) = Uvψ where c0 =
1

‖V ‖L1

〈v, Tφ〉.

To show [∆2 + V ]ψ = [∆2 + V ](−G0vφ + c0) = 0, notice that by differentiation under the

integral sign

∆2G0vφ = −∆

∫
1

4π|x− y|
v(y)φ(y)dy.

Since 1
4π|x−y| is the Green’s function for −∆, we have ∆2G0vφ = vφ in the sense of distribu-

tions. Hence,

[∆2 + V ](−G0vφ+ c0) = −vφ+ vUvψ = 0.

Next, we show that G0vφ ∈ L∞. Noting that S1 ≤ Q, we have Pφ = 0 and hence∣∣∣ ∫
R3

|x− y|v(y)φ(y)dy
∣∣∣ =

∣∣∣ ∫
R3

[|x− y| − |x|]v(y)φ(y)dy
∣∣∣ . ∫

R3

〈y〉|v(y)φ(y)|dy <∞.(59)

�

The following lemma gives further information for the function ψ in Lemma 7.1.

Lemma 7.2. Let |v(x)| . 〈x〉− 11
4
−. Let φ = Uvψ ∈ S1L

2(R3) \ {0} as in Lemma 7.1. Then,

(60) ψ = c0 +
3∑
i=1

ci
xi
〈x〉

+
∑

1≤i≤j≤3

cij
xixj
〈x〉3

+ ψ̃,

where c0 = 1
‖V ‖L1

〈v, Tφ〉 and ψ̃ ∈ L2 ∩ L∞. Moreover, ψ ∈ Lp for 3 < p ≤ ∞ if and only if

PTφ = 0 and
∫
yv(y)φ(y)dy = 0.

Furthermore, ψ ∈ Lp for 2 ≤ p ≤ ∞ if and only if PTφ = 0,
∫
yv(y)φ(y)dy = 0, and∫

yiyjv(y)φ(y)dy = 0, 1 ≤ i ≤ j ≤ 3.

Proof. Note that all the terms in the expansion and the function ψ are in L∞, therefore it

suffices to prove the claim for |x| > 1. Using Lemma 7.1 and the fact that Pφ = 0, we write

ψ(x)− c0 = − 1

8π

∫
R3

|x− y|[vφ](y)dy

= − 1

8π

∫
R3

(
|x− y| − |x|+ x · y

|x|
+
|y|2

2|x|
− (x · y)2

|x|3
)

[vφ](y)dy

+
1

8π

∫
R3

(x · y
|x|

+
|y|2

2|x|
− (x · y)2

|x|3
)

[vφ](y)dy =: ψ1 + ψ2.

We first claim that ψ1χB(0,1)c ∈ L2 ∩ L∞. To prove this claim we first consider the case

|y| < |x|/2. In this case, by a Taylor expansion we have

(61) |x− y| = |x|
(

1− x · y
|x|2

+
|y|2

2|x|2
− 1

8

(
− x · y
|x|2

+
|y|2

2|x|2
)2)

+O(|y|3/|x|2)
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= |x| − x · y
|x|

+
|y|2

2|x|
− (x · y)2

8|x|3
+O

( |y| 52+

|x| 32+

)
Using this and the fact that |vφ| = |V ψ| . v2 we have∣∣∣ ∫

|y|<|x|/2

(
|x− y| − |x|+ x · y

|x|
+
|y|2

2|x|
− (x · y)2

8|x|3
)

[vφ](y)dy
∣∣∣

.
∫
|y|<|x|/2

|y| 52+

|x| 32+
〈y〉−

11
2
−dy . |x|−

3
2
−
∫
R3

〈y〉−3− dy . |x|−
3
2
−

which belongs to L2 ∩ L∞ on B(0, 1)c.

In the case |y| > |x|/2, we have∣∣∣ ∫
|y|>|x|/2

(
|x− y| − |x|+ x · y

|x|
+
|y|2

2|x|
− (x · y)2

8|x|3
)

[vφ](y)dy
∣∣∣

.
∫
|y|>|x|/2

(
|y|+ |y|

2

|x|

)
|y|−

11
2
−dy . |x|−

3
2
−,

which yields the claim.

Now note that for |x| > 1

(62) 8πψ2 =
3∑
i=1

xi
|x|

∫
R3

yi[vφ](y)dy +
1

2|x|

∫
R3

|y|2[vφ](y)dy −
3∑

i,j=1

xixj
|x|3

∫
R3

yiyj[vφ](y)dy.

This yields the expansion for ψ since for |x| > 1, xi
|x| −

xi
〈x〉 = O(|x|−2) and

xixj
|x|3 −

xixj
〈x〉3 =

O(|x|−2).

Noting that the second and third terms in (62) are in LpB(0,1)c for 3 < p ≤ ∞, we see that

ψ ∈ Lp, 3 < p ≤ ∞, if and only if

c0 +
1

8π

3∑
i=1

xi
|x|

∫
R3

yi[vφ](y)dy ∈ L3+
B(0,1)c ,

which is equivalent to c0 = 0 and
∫
R3 yi[vφ](y)dy = 0, i = 1, 2, 3. To obtain the final claim,

to determine if ψ ∈ L2
B(0,1)c we rewrite the last two terms in (62) as follows

1

|x|3
( 3∑
i=1

( |x|2
2
− x2

i

) ∫
R3

y2
i [vφ](y)dy − 2

∑
1≤i<j≤3

xixj

∫
R3

yiyj[vφ](y)dy
)
.

Note that the term in the parentheses is a degree 2 polynomial in x, and hence cannot be in

L2 unless all coefficients are zero, which implies the final claim. �

The following lemma is the converse of Lemma 7.1.
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Lemma 7.3. Let |v(x)| . 〈x〉− 11
4
−. Assume that a nonzero function ψ ∈ L∞ solves Hψ = 0

in the sense of distributions. Then φ = Uvψ ∈ S1L
2, and we have ψ = c0 − G0vφ, c0 =

1
‖V ‖L1

〈v, Tφ〉. In particular, the expansion given in Lemma 7.2 is valid.

Proof. Let ψ ∈ L∞ be a solution of Hψ = 0, or equivalently −∆2ψ = V ψ. We first show

that for φ = Uvψ ∈ QL2, namely ∫
R3

v(x)φ(x)dx = 0.

Note that vφ = V ψ ∈ L1. Let η(x) be a smooth cutoff function with η(x) = 1 for all |x| ≤ 1.

For δ > 0, let ηδ(x) = η(δx). We have

|〈vφ, ηδ〉| = |〈V ψ, ηδ〉| = |〈∆2ψ, ηδ〉| = |〈ψ,∆2ηδ〉| ≤ ‖ψ‖L∞‖∆2ηδ‖L1 . δ.

Therefore, taking δ → 0 and using the dominated convergence theorem we conclude that

〈v, φ〉 = 0.

Moreover, let ψ̃ = ψ+G0vφ, then by assumption and (59), ψ̃ is bounded and ∆2ψ̃ = 0. By

Liouville’s theorem for biharmonic functions on Rn, ψ̃ = c. This implies that ψ = c−G0vφ.

Since

0 = Hψ = [∆2 + V ]ψ = V c− Uv(U + vG0v)φ⇒ v2c = vTφ,

we have c = c0 = 1
‖V ‖1 〈v, Tφ〉. Lastly notice that,

Q(U + vG0v)Qφ = Q(U + vG0v)φ = Q(Uφ+ vG0vφ)

= Q(Uφ− vψ + c0v) = Q(c0v) = 0,

hence φ ∈ S1L
2 as claimed. �

Let T1 = S1TPTS1 − ‖V ‖1
3(8π)2

S1vG1vS1, and S2 be the Riesz projection on the the kernel of

T1. Moreover, let S ′2 be the Riesz projection on the the kernel of S1TPTS1 and S ′′2 be the

Riesz projection on the the kernel of S1vG1vS1.

Lemma 7.4. Let |v(x)| . 〈x〉− 11
4
−. Then, S2L

2 = S ′2L
2 ∩ S ′′2L

2. Moreover∫
yv(y)S2φ(y)dy = 0 and PTS2 = QvG1vS2 = S2vG1vQ = 0. Finally, φ = Uvψ ∈ S1L

2

belongs to S2L
2 if and only if ψ ∈ Lp, p > 3.

Proof. It suffices to prove that S2L
2 ⊂ S ′2L

2 ∩ S ′′2L2 since reverse inclusion holds trivially.

Let φ ∈ S1L
2. We have

〈S1TPTS1φ, φ〉 = 〈PTφ, PTφ〉 = ‖PTφ‖2
2.(63)
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On the other hand, since S1v = 0 and x, y and v are real, we have

〈S1vG1vS1φ, φ〉 =

∫
R6

φ(x)v(x)|x− y|2v(y)φ(y)dydx

=

∫
R6

φ(x)v(x)[|x|2 − 2x · y − |y|2]v(y)φ(y)dydx

=− 2

∫
R6

φ(x)v(x)x · yv(y)φ(y)dydx = −2
∣∣∣ ∫

R3

yv(y)φ(y)dy
∣∣∣2(64)

Hence, if φ ∈ S2L
2 then we have

0 = 〈T1φ, φ〉 = 〈TPTφ, φ〉 − ‖V ‖1

3(8π)2
〈vG1vφ, φ〉 = ‖PTφ‖2

2 +
2‖V ‖1

3(8π)2

∣∣∣ ∫
R3

yv(y)φ(y)dy
∣∣∣2.

Therefore,

||PTφ‖2 =
∣∣∣ ∫

R3

yv(y)φ(y)dy
∣∣∣ = 0,

which yields the claim.

This also implies that
∫
yv(y)S2φ(y)dy = PTS2 = 0 and

QvG1vS2φ = −2Qv(x)x ·
∫
yv(y)S2φ(y)dy = 0.

Finally, by Lemma 7.2, ψ ∈ Lp, 3 < p ≤ ∞ if and only if PTφ =
∫
yv(y)φ(y)dy = 0,

which is equivalent to φ ∈ S2L
2 by the argument above. �

Define S3 the projection on to the kernel of T2 = S2vG3vS2+ 10
3
S2vWvS2, where W (x, y) =

|x|2|y|2. Note that the kernel of G3 is

|x− y|4 = |x|4 + |y|4 − 4x · y|y|2 − 4y · x|x|2 + 2|x|2|y|2 + 4(x · y)2.(65)

Since S2xjv = S2v = 0, all but the final two terms contribute zero to S2vG3vS2. Therefore

the kernel of T2 (as an operator on S2L
2) is

(66) T2(x, y) = v(x)
[26

3
|x|2|y|2 + 4(x · y)2

]
v(y).

Lemma 7.5. Let |v(x)| . 〈x〉−4−. Fix φ = Uvψ ∈ S2L
2. Then φ ∈ S3L

2 if and only if

ψ ∈ Lp, for all 2 ≤ p ≤ ∞. Moreover the kernel of T2 agrees with the kernel of S2vG3vS2.

Proof. Using (66) for φ ∈ S2L
2 , we have

〈T2φ, φ〉 =
26

3

∣∣∣∣ ∫
R3

|y|2v(y)φ(y) dy

∣∣∣∣2 + 4
3∑

i,j=1

∣∣∣∣ ∫ yiyjv(y)φ(y) dy

∣∣∣∣2.
In particular, T2 is positive semi-definite. Therefore φ ∈ S3L

2, if and only if 〈T2φ, φ〉 = 0,

which by the calculation above equivalent to
∫
yiyjv(y)φ(y) dy = 0 for all i, j. The claim

now follows from Lemma 7.2.
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The claim for S2vG3vS2 also follows from this since by the calculation before the lemma

its kernel is v(x)
[
2|x|2|y|2 + 4(x · y)2

]
v(y). �

Lemma 7.6. Let |v(x)| . 〈x〉−4−. Then the kernel of the operator S3vG4vS3 on S3L
2 is

trivial.

Proof. Take φ in the kernel of S3vG4vS3. Using (1), we have (for 0 < λ < 1)

R(H0;−λ4) =
1

2iλ2

[
R0(iλ2)−R0(−iλ2)

]
=
ei
√
iλ|x−y| − ei

√
−iλ|x−y|

8πiλ2|x− y|
.

By an expansion similar to (10), and the proof of Lemma 4.1, we have for 0 < λ < 1 and for

all |x− y|,

R(H0;−λ4) =
a0

λ
+G0 + a1λG1 + a3λ

3G3 + a4λ
4G4 +O(|λ|4+|x− y|5+),

where a0, a1, a3, a4 ∈ C are constants. Notice that since φ ∈ S3L
2 one has 0 = 〈v, φ〉 =

〈G1vφ, vφ〉 = 〈G3vφ, vφ〉. Also note that since vφ = V ψ, we have∫∫
|x− y|5+v(x)v(y)|φ(x)φ(y)|dxdy .

∫∫
|x− y|5+〈x〉−8−〈y〉−8−dxdy <∞.

Therefore

0 = 〈S3vG4vφ, φ〉 = 〈G4vφ, vφ〉(67)

= lim
λ→0

〈R(H0;−λ4)− a0λ
−1 −G0 − a1λG1 − a3λ

3G3

λ4
vφ, vφ

〉
= lim

λ→0

〈R(H0;−λ4)−G0

λ4
vφ, vφ

〉
.

Further, recalling that G0 = [∆2]−1 and considering the Fourier domain, one has

(68) 0 = lim
λ→0

〈R(H0;−λ4)−G0

λ4
vφ, vφ

〉
= lim

λ→0

1

λ4

〈( 1

8π2ξ4 + λ4
− 1

8π2ξ4

)
v̂φ(ξ), v̂φ(ξ)

〉
= lim

λ→0

∫
R3

−1

(8π2ξ4 + λ4)8π2ξ4
|v̂φ(ξ)|2dξ =

−1

64π4

∫
R3

|v̂φ(ξ)|2

ξ8
dξ.

Where we used the Monotone Convergence Theorem in the last step.

Note that this gives vφ = 0 since vφ ∈ L1. Also noting that the support of φ = Uvψ is a

subset of the support of v, we have φ = 0. This establishes the invertibility of S3vG4vS3 on

S3L
2. �
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Remark 7.7. Notice that, (67) and (68) imply that for any φ ∈ S3 one has

〈S3vG4vφ, φ〉 =
−1

64π4

∫
R3

〈 v̂φ(ξ)
ξ4

, v̂φ(ξ)
ξ4

〉
= −〈G0vφ,G0vφ〉

provided |v(x)| . 〈x〉−4−.

Lemma 7.8. The operator P0 := G0vS3[S3vG4vS3]−1S3vG0 is the orthogonal projection on

L2 onto the zero energy eigenspace of H = ∆2 + V .

Proof. Let {φk}Nk=1 be the orthonormal basis of S3L
2, then S3f =

∑N
j=1 φj〈f, φj〉. Moreover,

for all φk, one has ψk = −G0vφk = −G0V ψk are linearly independent for each k and ψk ∈ L2.

We will show that P0ψk = G0vS3[S3vG4vS3]−1S3vG0ψk = ψk for all 1 ≤ k ≤ N . This implies

that P0 is the identity on the range of P0. Since P0 is self-adjoint, this finishes the proof.

Let {Aij}Ni,j=1 be the matrix that representation of S3vG4vS3 with respect to the orthonor-

mal basis {φk}Nk=1, then by Remark 7.7

Aij = 〈S3vG4vφj, φi〉 = −〈G0vφj, G0vφi〉 = −〈ψj, ψi〉.

Also note that, by the representation of S3, we have

(69) S3vG0ψk =
N∑
j=1

φj〈vG0ψk, φj〉 = −
N∑
j=1

φj〈ψk, ψj〉 = −
N∑
j=1

φjAjk

By (69) we have

P0ψk = −
N∑
j=1

G0vS3[S3vG4vS3]−1φjAjk

= −
N∑

i,j=1

G0vS3(A−1)ijφiAjk =
N∑

i,j=1

ψi(A
−1)i,jAjk =

N∑
i=1

ψiδik = ψk.

�

Remark 7.9. One consequence of the preceeding results is that any zero-energy resonance

function is of the form:

ψ(x) = c0 + c1
x1

〈x〉
+ c2

x2

〈x〉
+ c3

x3

〈x〉
+

∑
1≤i≤j≤3

cij
xixj
〈x〉3

+OL2(1).

For some constants c0, c1, c2, c3, and cij, 1 ≤ i ≤ j ≤ 3. Hence, the resonance space is at

most 10 dimensional along with a finite-dimensional eigenspace. Moreover, S1 − S2 is at

most four dimensional, S2 − S3 is at most 6 dimensional, the rest is the eigenspace.
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[8] M. B. Erdoğan and W. Schlag, Dispersive estimates for Schrodinger operators in the presence of a

resonance and/or an eigenvalue at zero energy in dimension three: I, Dynamics of PDE 1 (2004), 359–

379.

[9] H. Feng, A. Soffer, and X. Yao, Decay estimates and Strichartz estimates of fourth order Schrödinger

operator. Journal of Functional Analysis, Volume 274, Issue 2, 2018, 605–658.

[10] H. Feng, Z. Wu, and X. Yao, Time Asymptotic expansions of solution for fourth-order Schrödinger

equation with zero resonance or eigenvalue. Preprint. arXiv:1812.00223.

[11] H. Feng, A. Soffer, Z. Wu, X. Yao, Decay estimates for higher order elliptic operators, preprint 2019,

arXiv:1904.12275.

[12] M. Goldberg, A Dispersive Bound for Three-Dimensional Schrödinger Operators with Zero Energy

Eigenvalues. Comm. PDE 35 (2010), 1610–1634.

[13] M. Goldberg and W. Green, Dispersive Estimates for higher dimensional Schrödinger Operators with

threshold eigenvalues I: The odd dimensional case, J. Funct. Anal. 269 (2015) no. 3, 633–682.

[14] M. Goldberg and W. Green, Dispersive Estimates for higher dimensional Schrödinger Operators with

threshold eigenvalues II: The even dimensional case, J. Spectr. Theory 7 (2017), 33–86.

[15] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and

three. Comm. Math. Phys. vol. 251, no. 1 (2004), 157–178.

[16] W. Green and E. Toprak, On the Fourth order Schrödinger equation in four dimensions: dispersive

estimates and zero energy resonances, to appear in J. Differential Equations, 62 pp.

[17] C. Hao, L. Hsiao, and B. Wang, Well-posedness for the fourth-order Schrödinger equations, J. Math.

Anal. Appl. 320 (2006), 246-265. 2

[18] C. Hao, L. Hsiao, and B. Wang, Wellposedness of Cauchy problem for the Fourth Order Nonlinear

Schrödinger Equations in Multi-dimensional Spaces, J. Math. Anal. Appl. 328 (2007), 58-83. 2
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